Electromotive force
Also called EMF, (denoted and measured in volts), refers to voltage generated by a battery or by the magnetic force according to Faraday's Law, which states that a time varying magnetic field will induce an electric current.
Electromotive "force" is not considered a force, as force is measured in newtons, but a potential, or energy per unit of charge, measured in volts. Formally, EMF is classified as the external work expended per unit of charge to produce an electric potential difference across two open-circuited terminals By separating positive and negative charges, electric potential difference is produced, generating an electric field. The created electrical potential difference drives current flow if a circuit is attached to the source of emf. When current flows, however, the voltage across the terminals of the source of emf is no longer the open-circuit value, due to voltage drops inside the device due to its internal resistance.
Devices that can provide emf include electrochemical cells, thermoelectric devices, solar cells, electrical generators, transformers, and even Van de Graaff generators. In nature, emf is generated whenever magnetic field fluctuations occur through a surface. An example for this is the varying Earth magnetic field during a geomagnetic storm, acting on anything on the surface of the planet, like an extended electrical grid.
In the case of a battery, charge separation that gives rise to a voltage difference is accomplished by chemical reactions at the electrodes a voltaic cell can be thought of as having a "charge pump" of atomic dimensions at each electrode.
A source of emf can be thought of as a kind of charge pump that acts to move positive charge from a point of low potential through its interior to a point of high potential. … By chemical, mechanical or other means, the source of emf performs work dWon that charge to move it to the high potential terminal. The emf ℰ of the source is defined as the work dW done per charge dq: ℰ= dW/dq.
We have refrained from using the term 'electromotive force' or 'e.m.f.' for short; for there is no consistency between different authors in the meaning of the term. … To some authors it is synonymous with 'voltage.' To others it means the open-circuit voltage of a battery. To a third group of authors it means the open-circuit voltage of any two-terminal device. This use is met most often in connection with Thevenin's theorem in circuit theory. To a fourth group it means the work accounted for by agencies other than differences of the (not measurable) Galvani potentials. Such authors equate the current–resistance product of a circuit branch to the sum of voltage plus e.m.f. A fifth group extends this use to field theory. The authors of this group equate the product of current density and resistivity to the sum of electric-field strength plus an e.m.f. gradient. A sixth group applies the term to electromagnetic induction. These authors define e.m.f. as the spatial line integral of the electric-field strength taken over a complete loop. To them the term 'counter e.m.f.' means something.
PIYUSH PUSHKAR
No comments:
Post a Comment